您好,欢迎访问马奇英教授团队官网

2022

发布者: 发布日期:2022-12-22  浏览次数:5582

Bradford, S. A., C. Shen, H. Kim, R. J. Letcher, J. Rinklebe, Y. S. Ok, and L. Ma. 2022. Environmental applications and risks of nanomaterials: An introduction to CREST publications during 2018–2021. Critical Reviews in Environmental Science and Technology 52(21): 3753-3762.

best_a_2020425_uf0001_c.jpg


Chen, J. Y., J. Y. Zeng, S. Ding, J. Li, X. Liu, D. X. Guan, and L. Q. Ma. 2022. Arsenic contents, speciation and bioaccessibility in rice grains from China: Regional and variety differences. Journal of Hazardous Materials 437: 129431.

1-s2.0-S0304389422012249-ga1_lrg.jpg


Dai, L., Z. Wang, T. Guo, L. Hu, Y. Chen, C. Chen, G. Yu, L. Q. Ma, and J. Chen. 2022. Pollution characteristics and source analysis of microplastics in the Qiantang River in southeastern China. Chemosphere 293: 133576.

1-s2.0-S0045653522000650-ga1_lrg.jpg


Dai, Z. H., S. Ding, J. Y. Chen, R. Han, Y. Cao, X. Liu, S. Tu, D. X. Guan, and L. Q. Ma. 2022. Selenate increased plant growth and arsenic uptake in As-hyperaccumulator Pteris vittata via glutathione-enhanced arsenic reduction and translocation. Journal of Hazardous Materials 424: 127581.

1-s2.0-S0304389421025498-ga1_lrg.jpg


Dai, Z. H., Y. J. Peng, S. Ding, J. Y. Chen, S. X. He, C. Y. Hu, Y. Cao, D. X. Guan, and L. Q. Ma. 2022. Selenium increased arsenic accumulation by upregulating the expression of genes responsible for arsenic reduction, translocation, and sequestration in arsenic hyperaccumulator Pteris vittata. Environmental Science & Technology 56(19): 14146-14153.

images_large_es2c03147_0006.jpeg


Ding, S., D. X. Guan, Z. H. Dai, J. Su, H. H. Teng, J. Ji, Y. Liu, Z. Yang, and L. Q. Ma. 2022. Nickel bioaccessibility in soils with high geochemical background and anthropogenic contamination. Environmental Pollution 310: 119914.

1-s2.0-S0269749122011289-ga1_lrg.jpg


Guan, D. X., Z. H. Dai, H. J. Sun, and L. Q. Ma. 2022. Arsenic and selenium in the plant-soil-human ecosystem: CREST publications during 2018–2021. Critical Reviews in Environmental Science and Technology 52(20): 3567-3572.

best_a_2010836_uf0001_c.jpg


Guan, D. X., S. X. He, G. Li, H. H. Teng, and L. Q. Ma. 2022. Application of diffusive gradients in thin-films technique for speciation, bioavailability, modeling and mapping of nutrients and contaminants in soils. Critical Reviews in Environmental Science and Technology 52(17): 3035-3079.

best_a_1900765_uf0001_c.jpg


Han, R., J. Chen, S. He, Z. Dai, X. Liu, Y. Cao, and L. Q. Ma. 2022. Arsenic-induced up-regulation of P transporters PvPht1;3-1;4 enhances both As and P uptake in As-hyperaccumulator Pteris vittata. Journal of Hazardous Materials 438: 129430.

1-s2.0-S0304389422012237-ga1_lrg.jpg


He, S. X., J. Y. Chen, C. Y. Hu, R. Han, Z. H. Dai, D. X. Guan, and L. Q. Ma. 2022. Uptake, speciation and detoxification of antimonate and antimonite in As-hyperaccumulator Pteris Cretica L. Environmental Pollution 308: 119653.

1-s2.0-S0269749122008673-ga1_lrg.jpg


Li, H. B., R. Y. Xue, X. Q. Chen, X. Y. Lin, X. X. Shi, H. Y. Du, N. Y. Yin, Y. S. Cui, L. N. Li, K. G. Scheckel, A. L. Juhasz, X. M. Xue, Y. G. Zhu, and L. Q. Ma. 2022. Ca Minerals and Oral Bioavailability of Pb, Cd, and As from Indoor Dust in Mice: Mechanisms and Health Implications. Environmental Health Perspectives 130(12): 127004.

ehp11730_f6.jpg


Li, S. W., M. Chang, X. Huang, H. Li, H. B. Li, and L. Q. Ma. 2022. Coupling in vitro assays with sequential extraction to investigate cadmium bioaccessibility in contaminated soils. Chemosphere 288: 132655.

1-s2.0-S0045653521031271-ga1_lrg.jpg


Lian, J., W. Liu, Y. Sun, S. Men, J. Wu, A. Zeb, T. Yang, L. Q. Ma, and Q. Zhou. 2022. Nanotoxicological effects and transcriptome mechanisms of wheat (Triticum aestivum L.) under stress of polystyrene nanoplastics. Journal of Hazardous Materials 423: 127241.

1-s2.0-S0304389421022093-ga1_lrg.jpg


Liang, J. H., X. Y. Lin, D. K. Huang, R. Y. Xue, X. Q. Fu, L. Q. Ma, and H. B. Li. 2022. Nickel oral bioavailability in contaminated soils using a mouse urinary excretion bioassay: Variation with bioaccessibility. Science of the Total Environment 839: 156366.

1-s2.0-S0048969722034635-ga1_lrg.jpg


Lin, X. Y., R. Y. Xue, L. Zhou, Y. S. Zhang, H. Y. Wang, S. Zhang, S. W. Li, A. L. Juhasz, L. Q. Ma, D. M. Zhou, and H. B. Li. 2022. Effects of various Fe compounds on the bioavailability of Pb contained in orally ingested soils in mice: Mechanistic insights and health implications. Environment International 170: 107664.

1-s2.0-S0160412022005918-ga1_lrg.jpg


Liu, X., R. Han, Y. Cao, B. L. Turner, and L. Q. Ma. 2022. Enhancing phytate availability in soils and phytate-P acquisition by plants: A review. Environmental Science & Technology 56(13): 9196-9219.

images_large_es2c00099_0002.jpeg


Ma, J. Y., X. C. Bao, W. Tian, D. L. Cui, M. Y. Zhang, J. Yang, P. Xiang, and L. Q. Ma. 2022. Effects of soil-extractable metals Cd and Ni from an e-waste dismantling site on human colonic epithelial cells Caco-2: Mechanisms and implications. Chemosphere 292: 133361. 

1-s2.0-S0045653521038352-ga1_lrg.jpg


Ma, L. Q., N. Basta, A. Juhasz, and J. Rinklebe. 2022. Advances in trace metal bioavailability in soils, dust and sediments: Implications to ecological and human risks. Environmental Pollution 302: 119028.

1-s2.0-S0269749122X00079-cov150h.gif


Ma, L. Q., D. X. Guan, S. Bradford, R. J. Letcher, J. Rinklebe, Y. S. Ok, and M. Whittle. 2022. New measures in 2022 to enhance the quality and reputation of Critical Reviews in Environmental Science and Technology journal. Critical Reviews in Environmental Science and Technology 52(22): 3943-3946.

best_a_2052587_uf0001_c.jpg


Niu, L., W. Liu, A. Juhasz, J. Chen, and L. Ma. 2022. Emerging contaminants antibiotic resistance genes and microplastics in the environment: Introduction to 21 review articles published in CREST during 2018–2022. Critical Reviews in Environmental Science and Technology 52(23): 4135-4146.

best_a_2117847_uf0001_c.jpg


Sun, D., W. Zhang, H. Feng, X. Li, R. Han, B. L. Turner, R. Qiu, Y. Cao, and L. Q. Ma. 2022. Novel phytase PvPHY1 from the As-hyperaccumulator Pteris vittata enhances P uptake and phytate hydrolysis, and inhibits As translocation in Plant. Journal of Hazardous Materials 423: 127106.


Sun, D., X. Zhang, D. Liao, S. Yan, H. Feng, Y. Tang, Y. Cao, R. Qiu, and L. Q. Ma. 2022. Novel mycorrhiza-specific P transporter PvPht1;6 contributes to As accumulation at the symbiotic interface of As-hyperaccumulator Pteris vittata. Environmental Science & Technology 56(19): 14178-14187.

Figure 1


Sun, H. J., S. Ding, D. X. Guan, and L. Q. Ma. 2022. Nrf2/Keap1 pathway in countering arsenic-induced oxidative stress in mice after chronic exposure at environmentally-relevant concentrations. Chemosphere 303: 135256.

1-s2.0-S0045653522017490-ga1_lrg.jpg


Tang, N., X. Liu, M. R. Jia, X. Y. Shi, J. W. Fu, D. X. Guan, and L. Q. Ma. 2022. Amine- and thiol-bifunctionalized mesoporous silica material for immobilization of Pb and Cd: Characterization, efficiency, and mechanism. Chemosphere 291: 132771.

1-s2.0-S0045653521032434-ga1_lrg.jpg


Wang, J., L. Q. Ma, R. Letcher, S. A. Bradford, X. Feng, and J. Rinklebe. 2022. Biogeochemical cycle of mercury and controlling technologies: Publications in critical reviews in environmental science & technology in the period of 2017–2021. Critical Reviews in Environmental Science and Technology 52(24): 4325-4330.

best_a_2071210_uf0001_c.jpg


Wang, M. Y., M. Y. Li, H. Ning, R. Y. Xue, J. H. Liang, N. Wang, X. S. Luo, G. Li, A. L. Juhasz, L. Q. Ma, and H. B. Li. 2022. Cadmium oral bioavailability is affected by calcium and phytate contents in food: evidence from leafy vegetables in mice. Journal of Hazardous Materials 424: 127373.

1-s2.0-S0304389421023414-ga1_lrg.jpg


Xu, M., Y. Lin, E. B. da Silva, Q. Cui, P. Gao, J. Wu, and L. Q. Ma. 2022. Effects of copper and arsenic on their uptake and distribution in As-hyperaccumulator Pteris vittata. Environmental Pollution 300: 118982.

1-s2.0-S0269749122001968-ga1_lrg.jpg


Xu, W., Q. Du, S. Yan, Y. Cao, X. Liu, D. X. Guan, and L. Q. Ma. 2022. Geographical distribution of As-hyperaccumulator Pteris vittata in China: Environmental factors and climate changes. Science of the Total Environment 803: 149864.

1-s2.0-S0048969721049391-ga1_lrg.jpg


Zhao, L., W. Xu, H. Guan, K. Wang, P. Xiang, F. Wei, S. Yang, C. Miao, and L. Q. Ma. 2022. Biochar increases Panax notoginseng's survival under continuous cropping by improving soil properties and microbial diversity. Science of the Total Environment 850: 157990.

1-s2.0-S0048969722050896-ga1_lrg.jpg


Zheng, P., Y. Liu, Q. An, X. Yang, S. Yin, L. Q. Ma, and W. Liu. 2022. Prenatal and postnatal exposure to emerging and legacy per-/polyfluoroalkyl substances: Levels and transfer in maternal serum, cord serum, and breast milk. Science of the Total Environment 812: 152446.

1-s2.0-S0048969721075240-ga1_lrg.jpg